Learning Analytics: Predictive & Prescriptive Complexity

    

The highest complexity of learning analytics is predictive and prescriptive analytics. This means using data to either predict what might happen, or to prescribe learning activities. And, out of the 5,713 reports we reviewed as part of our Learning Analytics Research Study, we only found a fraction of reports that we classed as “Predictive and Prescriptive.” In this post, we’ll explain how these reports are being used and suggest other ways you can try predictive or prescriptive analytics in your organization.

Minding the Gap

The spider charts we uncovered during our study (see the following image) show individual ratings in terms of both knowledge and business performance for several KPI metrics. These reports are prescriptive because they're used during coaching sessions with managers and inform a coach on:

  • which KPIs a manager needs to improve, and
  • whether the needed improvement is an issue of knowledge or an issue of application.

A coach can then use this information to prescribe learning activities to address those issues. We call this type of prescriptive analysis “gap analysis” because it analyzes gaps in knowledge and application.

Predictive Learning Analytics

Prescribing Potential Prescriptive Analytics

As more organizations start to push into predictive and prescriptive analytics, we can expect a wide range of approaches as we saw in our Advanced Evaluation blog post. prescriptive analytics might mean:

  • Benchmarking success metrics for a new program based on data about the success of previous similar projects

  • Automatically recommending training to learners based on their information and/or training histories (e.g. job role, interests, skill sets, etc.)

  • Making recommendations into how training and resources are designed based on the success of different modalities and approaches in previous projects


Recommended Reading: Learning Analytics & Complexity


Predicting the Future of Predictive Analytics

Under the heading of predictive analytics, we may start to see some of the following approaches emerge:

  • Setting the budget for a training program based on the likely impact of that program as shown by data analysis

  • Creating an early warning system for areas of the business less likely to hit compliance targets

  • Predicting the lifespan of resources in order to plan updates or replacements

All of these predictive and prescriptive approaches will require innovation and effort to become a reality, as there’s no well-worn path to follow. They also require building on the foundation of the other levels of complexity (e.g. benchmarking of success metrics for a new project requires data analysis from previous programs).

Actionable Insights

You can’t get straight to predictive and prescriptive analytics. You need a strategy to start at the lowest complexity and work your way up. As you plan how you’re going to get there, think about some of the approaches outlined in this article and identify one or two that would be beneficial in your organization.

Next Up: Experience Types

We’ve looked at different approaches to learning analytics from both category and complexity perspectives. Next week, we’ll explore the different kinds of learning experiences organizations use to collect data!


Getting started with learning analytics is easy.

Download this checklist to start tracking the analytics you already have in place and where you’d like to go next. Continue your journey by downloading the following eBook, which walks you through the five steps to start using learning analytics.

eBook: How to Start Using Learning Analytics

Andrew Downes

About The Author

As one of the authors of xAPI, Andrew Downes has years of expertise in data-driven learning design. With a background in instructional design and development, he’s well versed in creating learning experiences and platforms in corporate and academic environments.