5 Steps of Learning Analytics

    

Knowing how to effectively use learning analytics is a priority for many learning and development (L&D) professionals—but for many practitioners, simply getting started is often the hardest part. 

That's why we've created this quick-start guide to help you get started with your own learning analytics program. And be sure to download the complete eBook at the end of the post.

STEP 1: Plan & Gather Data

The first step is to start gathering all of your data in one place and in a common format. Keep in mind, there’s often a good amount of work and planning that goes into data collection, formatting, and aggregation—but there’s also a lot of value that comes from this critical step. And the sooner you start, the sooner you’ll have access to key insights.

watershed-learning-analytics-2.pngYou can’t have too much data—as long as it’s good data. Useless data can quickly become distracting and cumbersome. That’s why you need to be intentional about gathering the data you need to answer your specific questions. Once you’ve gathered your data, it’s important to make sure you have low-friction access to it by putting it in an effective format and system. After all, understanding your data will be difficult if you have to contact your IT department every time you want to ask a new question.

STEP 2: Review & Clean

Once your data is in one place, the next step is to familiarize yourself with what’s there. Think of this step as quality assurance for Step 1 as well as a foundation for later steps. 

  • Check your data. Take some time to explore your data for accuracy. Ask yourself if the data seems reliable.

  • Identify gaps. Ask yourself if there are holes in your data that will limit you down the road? Can you identify additional data you should be collecting?

  • Eliminate junk data. Have you found excessive noise or junk data? Too much junk data can get in your way and even start to affect performance of your LRS and reports if left unchecked.

  • Test your data. Simply evaluate learners and learning experiences, configure a few reports, or even ask others to double check for things you may have overlooked.

STEP 3: Operationalize

learning-analytics-watershed.pngOnce you have a solid data foundation, it’s time to put it to use. Look for some quick wins to gain internal support for your learning analytics project without having to dig too deeply into the data. Stakeholders may be cautious of your new reports at first, especially if they think any existing functionality has been removed.

So, start by reviewing your existing operational reports and then add a sampling of a few new findings or areas for improvement in your first iteration. Give stakeholders those basics, and you’ll have them eating out the palm of your hand.

STEP 4: Explore & Analyze

As you operationalized your data, you probably started to learn a lot about what is happening in your organization. Now, start asking why it’s happening. 

Begin by looking at unexpected findings from your reporting, including positive and negative deviations from the norm, and ask yourself why these particular outliers occurred.

You designed your learning program with a business goal in mind. So, at this point, you can look at your learning program holistically and start to measure its impact on the larger business goals. From there, you can identify the actions and behaviors needed to achieve certain goals, determine the learning needed to support those actions, and then design the program needed to inspire that learning. 

STEP 5: Build & Refine

watershed-learning-analytics-3.pngLearning programs and initiatives are never done—they are modified or replaced. The next time you begin a new learning program, design it with analytics in mind. You’ll know you’re an analytics pro when you start to weave data into all of your design decisions.

There are different ways you can build on what you’ve learned so you can get even more insight with your next program. We recommend you follow the Seven Steps of Learning Evaluation to design a mature analytics program. These steps take you through the process of designing good evaluation metrics and incorporating them into your programs.  


Want to continue to the journey?

If you'd like to read more about the steps to start using learning analytics, we've created an eBook that expands on each of our five steps. Click below to get started.

New Call-to-action


Mike Rustici

About The Author

As an innovative software developer turned entrepreneur, Mike Rustici has been defining the eLearning industry for nearly 20 years. After co-founding Rustici Software in 2002, Mike helped guide the first draft of xAPI and invented the concept of a Learning Record Store (LRS). In 2013, he delivered on the promise of xAPI with the creation of Watershed, the flagship LRS that bridges the gap between training and performance.