What Is Learning Experience Analysis?

As we completed our Learning Analytics Research Study, we found many reports that fell into the Learning Experience category. Not only were there more reports, but they also were more varied—leading us to create nearly double the number of dimensions under this category than compared to the learner and learning program categories. And in this post, we'll explore these learning experience dimensions in practice.

What Are Learning Experience Analytics?

Learning experience analytics focus on learning experiences, platforms, and content. They answer questions such as:

These analytics will most likely interest the L&D team and those responsible for creating, sourcing, and providing these learning experiences.

Conversely, learning experience analytics are less likely to be helpful to people managers and those more interested in how particular groups of people (or the organization as a whole) are performing.

What caused so many varied learning experience reports?

L&D team members tend to be more advanced Watershed users and have time to really dig into and explore their data. So, it's not surprising that we see a wide variety of reports regarding learning experience analytics.

A Quantum Leap into Learning Experience Dimensions

To help simplify these findings, we've grouped them into a few buckets. So let's tackle them one at a time.

1) Asset and experience dimensions

These are dimensions where the reports compare individual assets the learner interacts with or experiences, which include:

  • Resource: comparing resources (e.g., eLearning content, videos, or documents)
  • Experience: comparing different experiences (e.g., events or classes)
  • Question: comparing questions of an assessment or survey
  • Session: comparing different sessions of a course or other experience
  • Section: comparing parts of a document or other resource

For example, this report compares two survey questions:

Both questions show high percentages of always and sometimes responses, but the second question indicates comparatively more rarely and never responses. So, this may be a better area to focus on for future training initiatives.

2) Asset and experience grouping dimensions

Other dimensions compare grouping or collections of assets or experiences, which include:

  • Content Type: comparing different types of content (e.g., eLearning vs. video)
  • Content Provider: comparing various sources of the content (e.g., vendors)
  • Data Source: comparing the applications that sent the data
  • Duration: comparing different lengths of content or experiences
  • Version: comparing different versions of a piece of content

For example, this report compares the usage of learning content by duration:

This report shows people are more likely to consume content with a duration of 5, 10, or 15 minutes. However, this may be due to the content's overall availability, which can affect what people can watch.

3) How the experience or asset was accessed

Some dimensions compare how the experience or asset was accessed, which include:

  • Browser: comparing internet browsers (e.g., Google Chrome, Internet Explorer, etc.)
  • Device: comparing different devices (e.g., mobile phone, desktop, or tablet)
  • Workflow: comparing navigation flow to the content (e.g., search, share, homepage link, etc.)

For example, this report compares usage between an iPad and iPhone:

4) Outcome dimensions

Some dimensions compare various outcomes of the learning experience, which include:

  • Mistake: comparing the number of times different errors occur
  • Response: comparing different responses to a question
  • Score: comparing scores or ranges of scores

For example, this report compares responses to a question to highlight common knowledge gaps.

5) Time period dimensions

Some dimensions compare different timeframes, whether looking at data during a specific period or comparing recurring periods (e.g., day of the week or hour of the day).

For example, this report compares LMS activity by day of the week:

Aside from enrollments, LMS usage tails off toward the end of the week, with a peak on Tuesday. This finding suggests Tuesday may be an excellent day to enroll people in new programs.

6) The remaining (action and search) dimensions

We observed a verb dimension that compares the different actions taken by the learner, as shown in the following heatmap:

We also a search term dimension that compares different search terms:

How Are Learning Experience Analytics Used?

It's interesting to note that the organizations in our study primarily conducting learning experience analytics are different from those that mainly use learner and learning program analytics.

That's to be expected based on the learning analytics triangle as a maturity model, and why we recommend starting with one category of analytics before expanding to others.

It's also indicative that learning experience analytics are more likely to appeal to learning and development professionals, while learner and learning program analytics are more targeted at people managers.

Let's look at the kinds of learning experience analytics in use. Reports mostly compare individual learning experiences (51% of reports and 58% of report views) and time periods (31% of reports and 24% of views).

Reports organized by search term are also widespread (7% of reports and 10% of views), which is significant because not all researched clients have platforms with search capability.

Actionable Insights

We've seen that reports comparing individual experiences are used most often. This approach can be great for identifying the most popular learning content, but what do you do with that data?

Once you've identified your best content, consider further analysis to understand why it's the best. This method might involve further quantitative analysis by looking at performance by factors, such as duration or workflow, as we've seen above. You should also consider qualitative research following Brinkerhoff's Success Case Method.

Up Next: Complexities & Analysis Types

Next time, we move from categories and dimensions to complexities and analysis types, exploring the questions people ask as they analyze their data.

Subscribe to our blog

5 Ways Learning Analytics Can Transform Your Business

Learning analytics has a reputation for being complex and challenging. But what if you ignore the technicalities and look at the stories that data can tell? In this talk, we look at five ways global enterprises used their learning analytics platform to improve, adapt and transform areas of their business in very different circumstances.

eLearning Learning

This website stores cookies on your computer to improve your experience and the services we provide. To learn more, see our Privacy Policy