Learning Analytics: Predictive & Prescriptive Complexity

The highest complexity of learning analytics is predictive and prescriptive analytics. This means using data to either predict what might happen, or to prescribe learning activities. And, out of the 5,713 reports we reviewed as part of our Learning Analytics Research Study, we only found a fraction of reports that we classed as “Predictive and Prescriptive.” In this post, we’ll explain how these reports are being used and suggest other ways you can try predictive or prescriptive analytics in your organization.

Minding the Gap

The spider charts we uncovered during our study (see the following image) show individual ratings in terms of both knowledge and business performance for several KPI metrics. These reports are prescriptive because they're used during coaching sessions with managers and inform a coach on:

  • which KPIs a manager needs to improve, and
  • whether the needed improvement is an issue of knowledge or an issue of application.

A coach can then use this information to prescribe learning activities to address those issues. We call this type of prescriptive analysis “gap analysis” because it analyzes gaps in knowledge and application.

Prescribing Potential Prescriptive Analytics

As more organizations start to push into predictive and prescriptive analytics, we can expect a wide range of approaches as we saw in our Advanced Evaluation blog post. prescriptive analytics might mean:

  • Benchmarking success metrics for a new program based on data about the success of previous similar projects
  • Automatically recommending training to learners based on their information and/or training histories (e.g. job role, interests, skill sets, etc.)
  • Making recommendations into how training and resources are designed based on the success of different modalities and approaches in previous projects

Predicting the Future of Predictive Analytics

Under the heading of predictive analytics, we may start to see some of the following approaches emerge:

  • Setting the budget for a training program based on the likely impact of that program as shown by data analysis
  • Creating an early warning system for areas of the business less likely to hit compliance targets
  • Predicting the lifespan of resources in order to plan updates or replacements

All of these predictive and prescriptive approaches will require innovation and effort to become a reality, as there’s no well-worn path to follow. They also require building on the foundation of the other levels of learning analytics complexity (e.g. benchmarking of success metrics for a new project requires data analysis from previous programs).

Actionable Insights

You can’t get straight to predictive and prescriptive analytics. You need a strategy to start at the lowest complexity and work your way up.

As you plan how you’re going to get there, think about some of the approaches outlined in this article and identify one or two that would be beneficial in your organization.

Next Up: Experience Types

We’ve looked at different approaches to learning analytics from both category and complexity perspectives. Next week, we’ll explore the different kinds of learning experiences organizations use to collect data!

Subscribe to our blog

5 Ways Learning Analytics Can Transform Your Business

Learning analytics has a reputation for being complex and challenging. But what if you ignore the technicalities and look at the stories that data can tell? In this talk, we look at five ways global enterprises used their learning analytics platform to improve, adapt and transform areas of their business in very different circumstances.

eLearning Learning

This website stores cookies on your computer to improve your experience and the services we provide. To learn more, see our Privacy Policy